Aqueous self-assembly of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles.

نویسندگان

  • Wei Qi
  • P Peter Ghoroghchian
  • Guizhi Li
  • Daniel A Hammer
  • Michael J Therien
چکیده

Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant release based on the intended in vivo application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers at the silica-water interface.

The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) ...

متن کامل

Synthesis and pH-dependent micellization of diblock copolymer mixtures.

This work focused on the preparation and the aqueous solution properties of hybrid polymeric micelles consisting of a hydrophobic poly(epsilon-caprolactone) (PCL) core and a mixed shell of hydrophilic poly(ethylene oxide) (PEO) and pH-sensitive poly(2-vinylpyridine) (P2VP). The hybrid micelles were successfully prepared by the rapid addition of acidic water to a binary solution of PCL(34)-b-PEO...

متن کامل

Preparation and Characterization of Nanoparticles Using Poly(N-isopropylacrylamide)- Poly(ε-caprolactone) and Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymers with Thermosensitive Function

Thermosensitive nanoparticles were prepared via the self-assembly of two different poly(ε-caprolactone)-based block copolymers of poly(N-isopropylacrylamide)-b-poly(ε-caprolactone) (PNPCL) and poly(ethylene glycol)-b-poly(ε-caprolactone) (PEGCL). The self-aggregation and thermosensitive behaviors of the mixed nanoparticles were investigated using 1H-NMR, turbidimetry, differential scanning micr...

متن کامل

Formation of Poly(ethylene glycol)-Poly(ε-caprolactone) Nanoparticles via Nanoprecipitation

Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure ...

متن کامل

Gold nanoparticles functionalized with block copolymers displaying either LCST or UCST thermosensitivity in aqueous solution.

Gold nanoparticles (AuNPs) coated with a diblock copolymer composed of poly(ethylene oxide) (PEO) and poly(N,N-dimethylaminoethyl methacrylate) (PEO-b-PDMAEMA) were prepared, while their reaction with 1,3-propane sultone gave rise to quaternized PEO-b-PDMAEMA chains on AuNPs. Using pyrene as a probe equilibrated with polymer-coated AuNP aqueous solutions, the fluorescence measurement results sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 22  شماره 

صفحات  -

تاریخ انتشار 2013